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Abstract

Chronic gut disorders in the U.S. are commonplace,
however, they lack convenient and accurate measurement
tools. We propose a system that allows a person to take
a picture of their stool and extract clinical data from
the image to track their symptoms. To train this sys-
tem, we crowdsourced a stool dataset in the wild through
http://train.auggi.ai and had physicians annotate them with
the Bristol Stool Scale (BSS). The dataset gathered is highly
imbalanced, with type 1 having just 6 images. We trained a
ResNet18 classifier to predict the BSS, and then used deep
metric embeddings (triplet and contrastive loss) with the
goal of improving the performance of the low-shot classes.
Triplet and contrastive loss are evaluated as potential im-
provements on our baseline ResNet18 models due to their
additional information beyond purely vision. Triplet loss
uses an anchor, positive, and negative to push similar im-
ages closer and dissimilar images further apart. Con-
trastive applies the same concept with pairs instead of
triplets. Our ResNet18 trained model showed promising
results with a mean per class absolute deviation of 0.82
BSS, which means on average, the model was within one
BSS value from the true label, reasonable for clinical ap-
plications and a large improvement over what patients are
able to do on their own. Compared to GI physicians, our
deep learning models were not as accurate. Amongst the
deep learning techniques, the ResNet18 performed the best,
while the metric learning models were not able to improve
performance over the ResNet18. This may be due to the lack
of unlabeled data that help the metric models create embed-
dings that best separate the classes. With a modest increase
in the data in these few labeled classes, we expect the per-
formance to significantly improve and be more in-line with
what doctors are able to predict from stool images.

1. Introduction
One in five Americans suffer from some form of chronic

gastrointestinal (GI) disorder [1]. Managing treatment for

these disorders, such as irritable bowel syndrome, often re-
quires tracking symptoms and lifestyle patterns over time.
These patient-reported inputs are often subjective and make
it difficult to control their symptoms. We propose a model
that can allow patients to take a picture of their stool and au-
tomatically extract clinical data from the image. This allows
patients to track the physical manifestation of their disorder
over time in a convenient way. This system also allows doc-
tors to view objective and standardized metrics about the
state of their patient’s digestive system.

One standardized metric doctors use for GI health track-
ing is the Bristol Stool Scale (BSS). Based on a visual as-
sessment, doctors assign a score on a 1 to 7 point scale to
quantify the consistency of a patient’s stool. The BSS scale
is known to correlate well with transit time of food in the
digestive system and identifies the presence of constipation
and diarrhea, and precursors to colon cancer[2].

Figure 1. Bristol Stool Scale (BSS)

By leveraging deep learning, and specifically convolu-
tional neural networks (CNNs), we evaluated computer vi-
sion approaches that can augment physicians’ efforts to
classify stool images based on their BSS value. As part
of this effort, we have obtained 886 images of stool in
the wild. These images were collected from both inter-
net searches and crowdsourced images from our website
(http://train.auggi.ai). The majority of the images were
taken above a toilet with the camera aimed straight down
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at the stool. Each image in our created dataset includes a
BSS score, annotated by three physicians who specialize in
gastrointestinal disorders. The images vary greatly in terms
of sizes, view points, image quality and other characteris-
tics.

The research outlined in this paper is an extension of
work done for a project and startup called Auggi. Previous
work focused primarily on semantic segmentation of stool
(vs not stool) from an image. The current, in-place solution
reaches a satisfactory intersection over union (IoU) score of
82%. However, the classification task of predicting the BSS
proved challenging.

The dataset of stool images is highly imbalanced, hav-
ing mostly BSS scores of 3-5, and very few instances for
the other classes (1, 2, 6, 7) of the BSS. For example, there
were only 6 instances of type 1, indicating severe constipa-
tion. The current model used at Auggi counteracts this by
classifying on what we called a consolidated Bristol Stool
Scale, which aggregates the BSS to 3 classes instead. Even
with this simpler classification task, the current model was
only able to achieve an overall accuracy of 62%. Note: this
classification was done on the whole image, and the seg-
mentation mask was not used. The main deficiency in our
model were the few instances of severe constipation and di-
arrhea.

In this paper, we aim to improve on the current Auggi
classification model using dataset manipulation (artificially
rebalancing) and deep metric learning. Our experiments
consist of two baseline models using transfer learning with
a ResNet18 for comparison, and two techniques to improve
upon these baselines.

The next two experiments will use representation learn-
ing with triplet constraints. In our proposed system we will
strip the final softmax layer off our baseline network and
treat our CNN as a feature extractor instead of a self con-
tained classifier. We will evaluate triplet and contrastive loss
in their ability to optimize our feature extraction process to
create optimal embeddings. These feature embeddings will
then be passed into a nearest neighbors classifier and return
a majority vote on expected class.

2. Related Work

2.1. Domain Review

In recent years, CNNs have been applied to many do-
mains within the medical imaging field. Among the more
widely researched and relevant areas is cancer detection and
diagnosis. Though not specific to GI disorders and gas-
troenterology, the tasks involved in cancer detection are
similar to our use case for stool classification: localizing
the region of interest (or suspicious areas) and then specific
classification of this region.

For breast cancer detection, a DenseNet model was used

on 9,109 histopathological slide images and showed an ac-
curacy of 95.4% for multi-classification of breast tumors
[3]. Similarly, CNN and Long Short Term Memory (LSTM)
models were able to achieve an accuracy of 91% for breast
cancer classification on the same dataset [4].

To detect lung cancer, a semantic segmentation model
U-Net was used to identify pulmonary nodules, followed
by a CNN to classify the malignancy [5], [6]. The data
was gathered from a Kaggle challenge which included low
dose computed tomography scans. The same approach for
segmentation was used by another group, but instead used a
GoogleNet for classification.

For both breast and lung cancers, standardized medical
images were used as the training set. For skin cancer detec-
tion, RGB images in the wild have been shown to be highly
accurate as well. A CNN model trained at Stanford was
able to match dermatologist level accuracy for the detection
of various skin cancers [7]. This model was pretrained on
general everyday objects and then fine-tuned on approxi-
mately 130,000 training images. Their goal was to one day
enable a mobile application to increase the accessibility of
health care technology in an affordable way.

This subset of research in cancer detection shows that
given enough data, CNNs can be highly useful, and per-
haps outperform human capabilities in detection and classi-
fication. However, for small or imbalanced datasets, CNNs
struggle to learn enough from the limited dataset. This is
particularly relevant for more rare diseases or data that is
not often collected.

Given the difficulty in stool collection and highly sensi-
tive nature of its images, there exists no large database of
stool images. In addition to an our ongoing effort to build
such a database, the scope of this research proposal consists
of two goals. The first is to continue driving the application
of deep learning in an understudied area of gastroenterol-
ogy: stool classification. The second goal is to leverage and
apply the latest techniques in deep learning that aim to rem-
edy this small and imbalanced dataset challenge, which can
be applied to other important medical specialties as well.

2.2. Methodology Review

Using a CNN as a feature extractor to drive classifica-
tion is well charted territory. Past work has aimed on learn-
ing convolutional nonlinear features that can fit directly into
a kNN classifier in a representation learning framework [8].
The concept of re-thinking the training of convolutional fea-
ture embeddings has proven successful for implementations
beyond classification as well. One novel algorithm, SNE
and Crowd Kernel (SNaCK) Embeddings has seen promis-
ing results by combining expert triplet hints with convolu-
tional learning processes [9]. We hope to expand upon the
value generated by learning better feature embeddings and
apply them to our BSS classification task.



To learn better feature embeddings we will be doing a
deeper exploration of the loss functions that drive improve-
ments seen in aforementioned work. One of the most foun-
dational loss functions in this area of work comes in the
form of triplet loss. In this framework, expert triplets are
passed in for each training mini-batch to group similar data
points together and push differing ones apart - proven to be
successful in the application of facial recognition [10].

While we see triplet loss implementation as an impor-
tant first step in our evaluation of metric learning, a variety
of shortcomings have been noted in its basic implementa-
tion [20][12]. One proposed alternative to vanilla triplet
loss is a lifted loss deep feature embedding learning regi-
men that optimizes the objective of lifting a dense pairwise
matrix within each mini-batch [20]. As reported, these ef-
forts typically see a 3-4 percent increase in performance on
standardized data sets.

Additional alternative loss metrics have been seen in the
contrastive loss function. Contrastive loss has been effective
at improving expert triplets by imposing pair based training
instead of triplets [17].

For our proposed areas of work we focused on the core
triplet loss function and then evaluated contrastive loss as
an extension of potential performance-improving modifica-
tions.

3. Proposed Method

3.1. Image preprocessing and baseline classification

The focus of this paper is on classification, and therefore
given a stool image from the wild, we assumed accurate
localization and bounding boxes. We used these bounding
boxes to crop and classify images without much of the back-
ground noise.

In our first baseline model, we used transfer learning on
a ResNet-18 model pretrained on ImageNet. In our sec-
ond baseline model, we rebalanced the dataset artificially
by oversampling, with duplication, of the least common
classes, and undersampling the most common class. This
addresses the potential bias the dataset forces a model to
learn for predicting the most common class. These will
serve as baseline accuracies for the BSS predictions. The
figure below shows the distribution of the original and re-
balanced dataset:

We evaluated our ResNet-18 model on varying amounts
of duplications for classes 1, 2, and 7, while class 4 was
reduced by half (at random). The best rebalanced dataset
performance achieved on ResNet-18 were class 1 : 5x du-
plication (created 5 copies of the images in this class), class
2 : 2x, and class 7 : 2x.

Figure 2. Bristol Stool Dataset Class Distribution

3.2. Classification with Metric Learning

To improve on these baseline models, we built upon prior
work in the domain of metric learning for the purposes of
classification. From a high level, our approach captures the
notion of similarity through calculating the Euclidean dis-
tance between generated stool feature embeddings. Prior
work has shown that this approach can be beneficial for
imbalanced classes [14], which is very much present in
our BSS classification task. We pursued our goal of op-
timal feature embeddings by training CNN feature extrac-
tors through a variety of loss functions. We evaluated the
improvements via expert triplets by fine-tuning pretrained
ResNet-18 models with triplet and angular loss.

3.2.1 Embedding Optimization via Triplet Loss

Triplet loss was originally developed in applications for fa-
cial recognition [10] and is used to learn optimal embed-
dings (or encodings) for a given class in a low shot learning
application. In the original implementation, faces from the
same person should be close together and form well sep-
arated clusters in the embedding space. The goal of the
triplet loss is to make sure that a). two examples with the
same label have their embeddings close together in the em-
bedding space and b). two examples with different labels
have their embeddings far away [15]. A loss is then defined
over triplets of embeddings that consist of an anchor image,
a positive image (same class as the anchor), and a negative
image (different class than anchor). For some distance on
the embedding space d, the loss of triplet (a, p, n) is:

Figure 3. Triplet Loss Formula

Along with its corresponding gradient calculations:
Where d(a,p) and d(a,n) are the distance between the an-

chor and the positive, and the anchor and the negative re-
spectively. As we minimize the loss, d(a,p) is pushed to 0
and d(a,n) approaches a value greater than d(a,p) + margin



Figure 4. Triplet Loss Gradients

[15]. As soon as the negative image becomes a large nega-
tive, the loss becomes zero.

To mine useful triplets for our training process, we will
use an online mining approach. For each batch B that we
train, we will compute the embeddings which will provide
possible triplets. Of these possible triplets, we know that
only only a subset containing two positive and one negative
image is valid. We will choose the hard triplets where the
distance between positive and anchor is the largest and use
these P*K embeddings (where P is the number of classes
and K is the number of samples) to calculate a loss [15].

We anticipate that training a classifier with this loss func-
tion will produce better vector embeddings than a classifier
based on cross-entropy loss. These vector embeddings can
then be used as inputs to a softmax classification layer. This
approach should yield better results given the unbalanced
nature of our training data. The preferred alternative that
we will explore in our methodology will be to use the opti-
mized embeddings in a fast k nearest neighbor implementa-
tion run against the vector embeddings of all of the training
data.

3.2.2 Embedding Optimization via Contrastive Loss

Building upon our initial BSS kNN classification approach
using embeddings trained with triplet loss, we will also ex-
plore the value of optimizing our image embeddings with
contrastive loss. Triplet loss and metric learning in general
have been at the forefront of many advances in the com-
puter vision space, but they come with quite a few limita-
tions. Some shortcomings of note include: poor SGD con-
vergence due to needing to explore all possible triplets in
cubic space (n3), likely incorrect application of a one size
fits all global distance margin m, and triplet gradient cal-
culations that only take in pairwise relationships between
points instead of evaluating all points together. [12] See
prior section for triplet gradient formulas.

We believe that there is a good chance the aforemen-
tioned limitations may have affected our performance on
BSS image classification. To explore improvements on
these potential shortcomings we not only implemented
triplet loss during training, but contrastive loss as well.

Contrastive loss is a distance-based loss function that
takes a slightly different approach towards optimization via

pairs instead of triplets. Contrastive and triplet loss are sim-
ilar in that they both focus on distance learning instead of
classification error learning as seen in more standard loss
functions. However, by focusing on pairs instead of triplets,
contrastive loss minimizes the exploration space needed for
each step and potentially reach convergence in faster time.

To map high dimensional features to low dimensional
space with contrastive loss we move away from conven-
tional learning systems such as summing errors across sam-
ples and instead do it by individual pairs. The pairs in this
case are comprised of 2 input feature vectors in a high di-
mensional space. These two feature vectors will be com-
pared via a distance metric to result in a binary variable Y
being set to Y = 1 if the two vectors are similar or Y = 0 if
the two vectors are dissimilar [17].

As in triplet loss, contrastive loss will have the notion of
a margin that is used to threshold how vectors are grouped
together or pushed apart. This margin will be represented
by ’m’ and interacts with a set of learned parameters ’W’
that work to minimize the distance function ’D’ for similar
vectors and maximize ’D’ for dissimilar vectors. The exact
formula for contrastive loss is given as:

Figure 5. Contrastive Loss For Optimal Embeddings

The margin in the above formula is used to control the
contribution that dissimilar pairs have to the overall loss
function. It works by creating an envelope around the an-
chor point to determine what distance qualifies as dissimi-
lar vs similar. This is helpful to control the performance of
the model depending on dataset. An example of how con-
trastive loss performs with similar versus dissimilar vectors
can be seen below:

By taking the contrastive loss via pairs approach we hope
to improve upon our findings seen in our baseline experi-
ment as well as optimization through triplet loss.

4. Datasets
Our experiments used two datasets to both evaluate our

methodology with an established baseline, as well as ex-
plore incremental benefits in the BSS classification task.

4.1. CUB-200-2011

The CUB-200-2011 (CUB-200) dataset will serve as
a baseline to evaluate our model performance using both
triplet and contrastive loss metric optimization. CUB-200
is comprised of 200 species of birds with 11,788 individual
images, along with robust annotations of each image [18].
For the purpose of this exercise we will be focusing solely



Figure 6. Graph of contrastive loss function against energy (dis-
tance). The dashed (red) line is the loss function for the similar
pairs and the solid (blue) line is for the dissimilar pairs.[17]

on images and their classifications without use of supple-
mental annotation material.

Figure 7. CUB-200 Example Images

CUB-200 will be used to evaluate the performance of
our triplet and contrastive loss models. These performance
metrics will serve as a baseline relative to our performance
on the stool dataset.

4.2. Auggi Stool

Our Auggi stool dataset is comprised of 886 total images
in jpg and png formats. The annotations include segmenta-
tion and bounding box coordinates and BSS annotated by
three physicians. The stool dataset is broken out with the
following distribution, along with an example binary mask
of one sample image following:

Bristol Stool Scale Data Count
1 6
2 44
3 150
4 354
5 163

6 134

7 35

Total Samples 886

Figure 8. Sample Binary Mask of Stool

5. Experiments Evaluation Metrics
5.1. Metric Learning Baseline - CUB-200

For our metric learning techniques baseline, we applied
triplet and contrastive loss to the CUB-200 dataset. We
followed the lead of prior papers to determine the optimal
evaluation metrics on our baseline with cluster F1 scores
[20] and recall at different k values [19]. These evalua-
tion metrics fit our nearest neighbors use case better than
standard accuracy as we have the additional hyperparame-
ter of neighbor selection. Additionally, we evaluated against
these metrics as they allowed a more condensed view of
model performance. The below chart outlines our results
with embeddings optimized through triplet and contrastive
loss, with recall at varying k values:

Method F1 Score
(%)

Recall @ k (%)
k=1 k=2 k=4 k=8

Triplet Loss 21.3 43.4 49.4 58.6 63.9
Contrastive Loss 21.9 44.1 50.9 59.0 64.5

Table 1. Clustering F1 Score and Classification Recall for CUB-
200-2011 dataset.

We will use recall for each K (nearest neighbor values)
and F1 score to evaluate this CUB-200 baseline dataset. In
general, CUB-200 recall improves with a greater number
of neighbors. This makes sense and is possible due to the
size of the dataset - 11,788 images across 200 classes means
that there are up to 8 valid neighbors to be matching to.
Unfortunately since our stool dataset is a considerably lower



shot problem, we primarily used the CUB-200 baseline to
ensure our model was working correctly. In our experiments
we were able to achieve roughly the same results as seen in
prior works [12] and therefore feel confident in our code
design.

5.2. Stool Classification - Evaluation Metrics

For stool classification, we evaluated each of the 4 tech-
niques (fine-tuned ResNet-18, fine-tuned ResNet-18 with
rebalanced dataset, triplet, and constrastive losses) using
mean per per class accuracy, mean average precision (mAP)
and mean per class absolute deviation. The mean per class
absolute deviation was used because we care not only if the
BSS prediction is correct or not, but also by how much.

We also included results from a stool classification study
by physicians who provided their visual prediction for 34
BSS images. There are several ways to evaluate perfor-
mance for physicians, but we chose to calculate accuracy by
using the majority vote class as the absolute ground truth,
and predictions by doctors outside the majority vote were
considered ”incorrect”. It’s worth noting that the dataset
in this study was entirely different from the images ”in the
wild” that is used in our study, however, it allows us to have
some level of comparison between clinical measurements.

6. Results Performance Discussion
6.1. Stool Classification - Aggregate Results

Figure 9. BSS Mean Per Class Accuracy

The physicians performed fairly similar across each of
the 7 classes, but this was due to the roughly balanced na-
ture of their dataset. For our stool data in the wild dataset,
the trend was clear that for classes with fewer samples, the
performanced dropped significantly on mean per class ac-
curacy and mean per class absolute deviation.

All four deep learning approaches achieved less accu-
rate results than what physician GI specialists were able to
predict. Amongst the four techniques, the best performing
model was the ResNet18 model using original (unbalanced)
dataset. Using the (artificially) rebalanced dataset did not

Figure 10. BSS Mean Per Class Absolute Deviation

Figure 11. mAP Score

improve the mean per class accuracy, but it did slightly im-
prove the mean per class absolute deviation. The metric
learning approaches performed significantly worse from the
ResNet18 model on original unbalanced dataset.

In particular, the metric learning approaches did not per-
form as we had hoped on these few labeled classes. Some
possible explainations for this shortfall may include the lack
of more unlabeled examples. Although metric learning can
work well in low-shot learning situations of few labeled ex-
amples, it works better when it has a number of unlabeled
examples to help the model learn embeddings that best sep-
arate the classes. We simply did not have more unlabeled
images to help the metric models learn separable embed-
dings.

6.2. ResNet18 Performance

The initial ResNet18 model achieved a mean per class
accuracy of 49.8%. This model had difficulty predicting
BSS Classes 1 and 2, which had scores of 0% and 33.3%,
respectively, and brought the performance down signifi-
cantly. This is not surprising given the low count for these
classes in the test set. Class 1 had only 1 sample in the test
set, while class 2 had 9 samples. It’s worth noting that Class



7 had 7 samples but was able to achieve 57.1%. The most
common class is class 4, and it achieved 85.9%, the best
amongst all classes. Using mean average precision (mAP),
the Rebalanced technique scored 0.59.

When evaluating performance using the mean abso-
lute deviation per class, the results showed more promise.
Across all classes, the mean absolute deviation was 0.76
(BSS value), which means the predicted BSS score was off
by less than one BSS score. Given there is some visual sub-
jectivity between physicians who annotate the ground truth
to images (and real samples), is within reason to be within
1 BSS value between doctors, and not have complete con-
formance of the BSS value for a sample. A study by Blake
et. al. [2] showed physician GI specialists have a mean
absolute deviation of 0.39 BSS value.

To achieve these results, freezing 70% of the network’s
layers balanced the transfer learning from ImageNet data,
while still allowing the network to fine-tune on the stool
dataset. Experiments varying the degree of layers frozen
were tried, along with an exhaustive hyperparameter search.
We used Stochastic Gradient Descent with mini-batch, and
cross-entropy to evaluate the loss. We also used data aug-
mentation (random horizontal and vertical flip, random crop
and color jitter).

6.3. ResNet18 with Rebalanced Dataset Perfor-
mance

The ResNet18 with rebalanced dataset (Rebalanced) was
able achieve a mean per class accuracy of 46.5%, which
dropped from the non-balanced dataset. For most classes
the accuracy dropped, although notably, for class 7 it im-
proved. The per class absolute deviation did have an im-
provement that dropped to 0.77 BSS vs. 0.82 BSS (lower
deviation is better). This suggests that although the rebal-
anced set was correct less often, on the whole, its predic-
tions were closer to the ground truth than the non-balanced
ResNet18 model. The mAP score also dropped to 0.59.

For the ResNet18 rebalanced experiment, the same hy-
perparameters for the unbalanced dataset proved the best
performing. This includes the same number of layers frozen
(70%), as well as stochastic gradient descent, cross-entropy
loss and data augmentation (random horizontal and vertical
flip, random crop and color jitter).

6.4. Triplet Loss

The original unbalanced dataset (with horizontal and ver-
tical flips, random crops, and color jitter augmentations)
was fed through the triplet loss implementation [21] and op-
timized with a thorough grid search. The best results were
found using a ResNet18 backbone in which the first four
layers were frozen. In addition, the model was trained for
30 epochs, a learning rate of 0.0004, and a batch size of 12.
A margin of 1.5 was found to be optimal to train the triplet

loss classifier. The results are detailed as below:

Method F1 Score
(%)

Recall @ k (%)
k=1 k=2 k=4 k=8

Triplet Loss 45.2 45.2 41.8 55.4 55.4
Table 2. Clustering F1 Score and Classification Recall for Triplet
Loss Embedding Optimization on Stool dataset.

As compared to the Cub-200 dataset, the recall scores
look similar. The k=1 recall is almost exactly the same,
however the k=8 recall on the Stool Dataset does not
achieve the same results, peaking at 55.4. It’s worth not-
ing that F1 scores are nearly double for the Stool Dataset
over the Cub-200 dataset.

As Figure 9 shows, the mean per class accuracy of
the triplet loss implementation yielded subomtimal results.
This accuracy across all classes for the best KNN imple-
mentation (where K=8), yielded only an accuracy of 0.35.
The mean per class absolute deviation also appears to be
worse (higher) than the Base ResNet18 implementation,
achieving a 1.01 and .82 deviation respectively. The mean
average precision for the triplet loss implementation was
0.40, which is also below the base ResNet18 implementa-
tion 0.62.

As noted above, the relatively small number of classes
for this dataset resulted in less than optimal results for the
triplet loss implementation. Specifically, the model seemed
to do well for classes in the middle of the Bristol Stool Scale
(3-5), but it performed particularly poorly against the ex-
tremes of the scale (1-2, 6-7). These extremes are also the
classes where there is signficantly less training data, which
demonstrates that the triplet loss did not seem to perform as
well as expected for our low shot learning case.

It was hypothesized that perhaps an implementation
where the negative anchor was made to be +- one from
the positive anchor would help during training time, thus
forcing the model to learn ”hard” samples, and differentiate
from similar classes. Unfortunately this resulted in worse
results than the random sampling of negative anchors of the
triplet loss function. The greatest handle on model accuracy
seems to come from the margin that the loss function drives
all positive - negative anchors to be below. Small changes in
the margin appear to have a large impact, and at a value of
1.5 the loss seems to converge with stability until it plateaus
after about 30 epochs.

6.5. Contrastive Loss

As a whole, the contrastive loss [21] performed the worst
of all of the different loss function implementations we ex-
perimented with. The k=1 recall scores are again similar
to the Cub-200 dataset, however the k=8 recall performs
even worse than the triplet loss implementation. The F1
score does still however remain high (46.9) as opposed to
the recall reported by the CUB-200 dataset (21.9). The best



model implementation was achieved by freezing the first 5
layers of the ResNET18 backbone, using 128 features for
the vector embedding, training over 30 epochs with a batch
size of 12. The margin was again set to 1.5 as this appeared
to be the best for the contrastive loss as well.

Method F1 Score
(%)

Recall @ k (%)
k=1 k=2 k=4 k=8

Contrastive Loss 46.9 46.8 40.7 45.2 47.5
Table 3. Clustering F1 Score and Classification Recall for Con-
trastive Loss Embedding Optimization on Stool dataset.

The mean per class accuracy, and per class mean abso-
lute deviation were also the lowest of all the implementa-
tions we experimented with, with scores of 0.29 and 1.05
respectively. The mean average precision of the best knn
implementation (k=8) was 0.30.

One possible explanation for the poor performance of the
contrastive loss implementation is that it only operates on
pairs of images, rather than triplets. This means that for
each training run we lose 1/3 of the information from the
training batch as compared to the triplet loss implementa-
tion. Thus after running for 30 epochs (the same as the
triplet loss implementation), we are pulling much less in-
formation from the training set. It is possible that training
for longer could be helpful, however the training loss is al-
ready near 0 and it appears that we are already approaching
a region where the model is beginning to overfit. Perhaps a
different underlying model architecture with fewer param-
eters (other than Resnet18), could be beneficial to reduce
overfitting.

6.6. Addendum: Support Vector Machine

In the course of gathering the results of the above exper-
iments, we also decided to explore some additional classifi-
cation methods beyond k-Nearest Neighbor. Of the alterna-
tive classifiers we saw the best performance with a support
vector machine (SVM) classifier.

Results are as follows:

Method F1 Score Recall Mean Accuracy
Triplet Loss 58.2 58.2 36.9

Contrastive Loss 45.8 45.8 22.7
Table 4. Test evaluation metrics of SVM trained on reference em-
beddings optimized on MTG cards.

We were surprised to see that the template matching ap-
proach taken with kNN may not be the ideal solution to our
BSS classification task. While we did not set out to prove al-
ternatives to nearest neighbor approaches, the significantly
better SVM performance has shown that there may be addi-
tional avenues to explore for future improvements.

7. Conclusion
The results of our study showed a promising system that

could predict the BSS score on images in the wild. Using
a ResNet18 proved to be the best performing model and
provided reasonably accurate results for potential use in the
clinical or at-home setting. However, the potential for deep
metric learning on stool classification has yet to proven its
ability to learn in a low-shot learning environment.

Overall, the results thus far are encouraging and sug-
gest that neural network based classifiers are already ap-
proaching human levels of classification, but have not yet
surpassed GI specialist performance. Given the small data
set that was used for this implementation, it can be hypoth-
esized that these very same pipelines may perform signifi-
cantly better when supplemented with additional data.

In future research, building out a dataset that closer
balances all classes will likely be needed to train a high
performing system, which we fully expect to occur soon.
Other CNN architecture beyond ResNet18 can be ex-
plored as the backbone for stool images, especially with
a small dataset. Perhaps a smaller and more lightweight
model would help us to further improve the model accu-
racy. Researchers may also explore how more data might
change the triplet loss and contrastive loss implementa-
tions. Code for the implementation can be found here:
https://github.com/skyler1253/DLF inalP roject
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